Bacterial endophytes enhance competition by invasive plants.

نویسندگان

  • Marnie E Rout
  • Thomas H Chrzanowski
  • Tara K Westlie
  • Thomas H DeLuca
  • Ragan M Callaway
  • William E Holben
چکیده

UNLABELLED PREMISE OF THE STUDY Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • METHODS We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • KEY RESULTS We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • CONCLUSIONS This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fungal endophytes directly increase the competitive effects of an invasive forb.

Competitive outcomes among plants can vary in different abiotic and biotic conditions. Here we tested the effects of two phylotypes of Alternaria endophytes on the growth, competitive effects, and competitive responses of the exotic invasive forb Centaurea stoebe. Centaurea stoebe was a better competitor against North American grass species than grasses from its European home range in the absen...

متن کامل

Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes

Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We ide...

متن کامل

Enhancing phytoremediation through the use of transgenics and endophytes.

In the last decade, there has been an increase in research on improving the ability of plants to remove environmental pollution. Genes from microbes, plants, and animals are being used successfully to enhance the ability of plants to tolerate, remove, and degrade pollutants. Through expression of specific bacterial genes in transgenic plants, the phytotoxic effects of nitroaromatic pollutants w...

متن کامل

Bacterial endophytes and their interactions with hosts.

Recent molecular studies on endophytic bacterial diversity have revealed a large richness of species. Endophytes promote plant growth and yield, suppress pathogens, may help to remove contaminants, solubilize phosphate, or contribute assimilable nitrogen to plants. Some endophytes are seedborne, but others have mechanisms to colonize the plants that are being studied. Bacterial mutants unable t...

متن کامل

Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.

Bacterial and fungal endophytes are widespread inhabitants inside plant tissues and have been shown to assist plant growth and health. However, little is known about plant growth-promoting endophytes (PGPE) of medicinal plants. Therefore, the aims of this study were to identify bacterial and fungal endophytes of Teucrium polium and to characterize plant growth-promoting (PGP) properties of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 100 9  شماره 

صفحات  -

تاریخ انتشار 2013